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Instability waves on the air-sea interface 
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(Received 2 December 1991 and in revised form 14 September 1992) 

We used a compound matrix method to integrate the Orr-Sommerfeld equation in 
an investigation of short instability waves ( A  < 6 em) on the coupled shear flow at 
the air-sea interface under suddenly imposed wind (a gust model). The method is 
robust and fast, so that the effects of external variables on growth rate could easily 
be explored. As expected from past theoretical studies, the growth rate proved 
sensitive to air and water viscosity, and to the curvature of the air velocity profile 
very close to the interface. Surface tension had less influence, growth rate increasing 
somewhat with decreasing surface tension. Maximum growth rate and minimum 
wave speed nearly coincided for some combinations of fluid properties, but not for 
others. 

The most important new finding is that, contrary to some past order of magnitude 
estimates made on theoretical grounds, the eigenfunctions at  these short wavelengths 
are confined to a distance of the order of the viscous wave boundary-layer thickness 
from the interface. Correspondingly, the perturbation vorticity is high, the 
streamwise surface velocity perturbation in typical cases being five times the orbital 
velocity of free waves on an undisturbed water surface. The instability waves should 
therefore be thought of as fundamentally different flow structures from free waves : 
given their high vorticity, they are akin to incipient turbulent eddies. They may also 
be expected to break at  a much lower steepness than free waves. 

1. Introduction 
Radar probing of the sea surface has focused renewed attention on the small-scale 

structures readily visible on a wind-blown water surface. Although apparent to the 
casual observer, they are hard to quantify, understand or conceptualize physically, 
given their ephemeral and complex nature. For some time now it has been clear that 
these small-scale structures act as the ‘roughness elements’ of the sea surface, in that 
they interact with the turbulent air flow to extract more momentum from the wind 
than a smooth surface would (but not much more), and to transfer it to the deeper 
shear flow of the oceanic mixed layer, possibility via a circuitous route involving 
longer waves. It is only recently, however, that we have begun to gain significant 
insight into the physics of the small-scale structures, from innovative laboratory 
investigations (reviewed by Toba 1985), and theoretical studies of the temporal 
stability of the combined air-water shear flow (Valenzuela 1976; Kawai 1979; van 
Gastel, Janssen & Komen 1985). 

Patches of short waves appearing on a quiescent lake under a wind gust are known 
as ‘eat’s paws’. Similar intermittent roughening of t,he surface is also evident on a 
raging sea. The theoretical idealization is suddenly imposed spatially uniform wind, 
over still water. This can also be fairly well approximated in the laboratory. The 
rapid appearance of waves is reasonably attributed to the hydrodynamic instability 
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of the shear flow at the air-water interface. Wuest (1949), and later independently 
Lock (1954), were the first to treat the interface instability problem in the classical 
theoretical framework of Rayleigh, Tollmien, Schlichting and others. Supposing 
parallel viscous shear flow in air and water, they determined approximate stability 
criteria by analytical means. Both Wuest and Lock wrote down the four boundary 
conditions a t  the air-water interface, expressing the continuity of two velocity and 
two stress components. Compared to the boundary layer over a flat plate, these 
boundary conditions greatly complicate the problem. 

Miles (1957a) attempted to  simplify the problem by satisfying the inviscid 
boundary conditions (continuity of normal velocity and stress) rigorously, but 
making approximate allowances for boundary layers. The work of Miles attracted 
considerable attention, sparking renewed interest in the use of stability models to 
examine the wind-wave generation problem. It was not until the advent of 
microwave radar probing of the sea surface that Valenzuela (1976) returned to the 
full formulation of the interface instability problem, and showed by numerical 
integration of the Orr-Sommerfeld equation that the waves with highest growth 
rates fall into the gravity-capillary range important for scatterometry. Kawai (1979) 
carried out an extensive investigaticn of the growth rate of short instability waves 
as a function of wavenumber, both through the numerical integration of the 
Orr-Sommerfeld equation, and laboratory observation. His results established 
beyond doubt that short wind waves arise on a quiescent wind-blown surface on 
account of the instability of the coupled air-water shear flow, very much as 
turbulence arises in a boundary layer. Kawai also found that the wave speed of the 
instability waves is essentially the same as theory predicts for free waves, allowing 
for advection by the shear flow. As is well known, gravity-capillary waves have 
minimum wave speed at a wavelength of about 1.7 em. Kawai’s results showed that 
the maximum growth rate of the instability waves, as a function of wavelength, 
nearly coincided with minimum wave speed. We found this intriguing, and embarked 
on an investigation of exactly how fluid properties affect the growth rate of the 
instability waves. 

An analytical investigation of the same problem by van Gastel et al. (1986) has led 
to the conclusion that surface tension is of subordinate importance, so that, by 
implication, the coincidence of minimum wave speed and maximum growth rate had 
to  be fortuitous. Other results were that the velocity profile in air had a first-order 
effect on growth rate (as Miles had shown), and so had the viscosity in water and air. 
Van Gastel et al. concluded also that wave growth was mainly due t o  pressure work, 
the shear stress perturbation being negligible. The conclusions were reached on the 
basis of order of magnitude estimates involving fractional powers of a moderately 
small parameter. 

The investigations of Valenzuela, Kawai, and van Gastel et al. all focused on the 
growth rate of the instability waves, and the internal structure of those waves 
remained unexplored. The two numerical studies extended only to  a limited range of 
parameter space, while the accuracy of the analytical study of van Gastel et al. was 
difficult to  assess. A robust and efficient numerical technique held out the promise 
that these gaps in understanding could be bridged. Such a technique was kindly 
suggested to us by Chester Grosch, and became the cornerstone of our work. 

While this method allowed us to calculate growth rates and eigenfunctions with 
little difficulty, it imposed some limitations on the mean profile to be treated. In  
order to have enough resolution between the interface and the critical layer (a very 
short span), a dense grid had to be used, which then limited the distance to  which the 
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integration could reasonably be carried. This was acceptable, because the 
perturbations of interest were evanescent beyond a millimetre or two of the interface. 
However, the mean velocity profiles had t o  be truncated in such a way that their 
outer regions were unrealistic. Furthermore, our computational method could not 
cope with the near-discontinuity in the aecond derivative of the mean air velocity 
profile, UL(z), characterizing the linear-logarithmic profile used in previously 
theoretical investigations. We therefore used profiles with a smooth variation of 

The calculations revealed that, as may be expected, the value of UL(z) near the 
interface (and the critical layer : the two are very close for short waves) had a major 
effect on growth rate. Viscosities of the two media are also important, although their 
effect is less than that of U;(z). Surface tension affects the growth rate only slightly, 
and the wavelength of the fastest growing wave lessens with a reduction in surface 
tension, but not as much as the wavelength of minimum wave speed. For the most 
part these results are in agreement with conclusions of previous studies. 

The major new insight we gained came from the calculation of the eigenfunctions : 
they turned out to be dominated by the ‘viscid’ solutions of the Orr-Sommerfeld 
equation. A simple heuristic argument justifying this result runs as follows. As a 
wavelet a t  its crest ‘compresses’ the steep velocity gradient in the air, a large 
perturbation velocity appears on the air side of the interface. The horizontal velocity 
being continuous, the same perturbation is transmitted to the water. The inviscid 
solution in the water, which is very similar to a free wave, has a much smaller surface 
velocity (for given amplitude) so that a viscid solution is required to satisfy the 
boundary condition of velocity continuity. 

The internal flow structure of the instability waves thus differs dramatically from 
the structure of free waves. While the surface moves as in a free wave, the motion 
below amounts to shallow vortices growing rapidly. At even a small finite amplitude, 
these should form rollers, causing the waves to ‘break’, in the sense of the surface 
fluid overtaking the wave. In  other words, instability waves may be characterized as 
incipient turbulent eddies peculiar to a free surface. 

Ui(2). 

2. Model of the shear flow 
To repeat a few key points, Kawai (1979) showed that (i) hydrodynamic instability 

is responsible for the wind-induced ruffling of an initially smooth water surface, and 
(ii) the ruffles behave as gravity-capillary waves with a wave speed near minimum, 
and wavenumber of order 3 cm-l. As did Kawai, we assume that linear instability 
waves on the combined air-water shear flow constitute a valid model of the ruffles. 
We will explore the effect of external variables on the growth rate and wave speed 
of the instability waves, and determine their internal flow st>ructure, by numerical 
integration of the Orr-Sommerfeld equation. 

The mean velocity U ( z ) ,  and its second derivative U”(z) ,  play an important role in 
the equation. As is verified a posteriori, the perturbation flow associated with the 
instability waves is significant only very close to the interface, so that only the 
innermost portion of the velocity profiles in air and water matters. On the other 
hand, high resolution is required in the thin active region of the perturbations, 
making it impractical to integrate much further from the interface than the outer 
limit of the active regions. The imposition of an artificial top or floor is known to yield 
spurious modes in the resulting eigenfunction spectrum (Lakin & Grosch 1982). 
Therefore we have truncated the velocity distribution in the air by choosing simple 
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integrable functions for Ui(z ) ,  so as to yield a realistic velocity distribution within the 
range of significant perturbation amplitude. Outside that range the velocity 
approaches a constant value which is only about half the typical wind speed a metre 
or two above the sea surface. The water side is less important in the problem, and a 
simple exponential velocity distribution is adequate. 

2.1. Air jow model 

The highly idealized ‘ wind-gust ’ model underlying the calculations, which also 
approximates conditions in the laboratory experiments on wave generation, supposes 
constant shear stress impulsively imposed over a smooth water surface and 
remaining constant in time and space. The stress is continuous across the interface, 
and defines friction velocities u* on the two sides : 

7=pauza =pwu:w = ~ a v a q ( O )  = p w ~ w u w ( O ) ,  (1) 

where subscript a stands for air side, w for water side. On the air side, the velocity 
distribution rapidly becomes similar to fully developed turbulent flow over a smooth 
flat plate: in laboratory studies this occurs within approximately 1 s (Larson & 
Wright 1975). Of importance here are velocities close to the water surface, in the 
‘inner ’ or ‘wall ’ region of the turbulent boundary layer. The velocity distribution in 
this region is linear with height in a viscous sublayer, logarithmic beyond. Kawai 
(1979) used an interpolation formula due to Miles (1957b), patching a linear to a 
logarithmic function. Where the two meet, UL(z) is nearly discontinuous, a feature 
not only troublesome computationally but also unphysical. 

To construct a better model, let conventional non-dimensional variables 
Ui = (Ua- U,,)/U*~ and z+ = u*,z/v, describe the inner-law velocity distribution on 
the air side (U,  is the water surface velocity). In terms of these variables, but writing 
U ( z )  for U+(z+) for simplicity, surface conditions on the velocity profile are 

U(0) = 0, u’(0) = 1. (2) 

Supposing the velocity gradient to vanish at large z, and the second derivative to 
be integrable, the following integral constraints on W(z)  emerge : 

1; U”(z) dz = - 1, 1: zU”(z) dz = -Urn, (3a ,  b )  

where U,  is the free-stream air velocity. A simple function for a smooth second 
velocity derivative, with a maximum at the interface and monotonic decay, is one 
half of a Gaussian distribution: 

U”(z) = - A  exp ( -  b2z2), (4) 

with A ,  b constants. By ( 3 )  the constants have to satisfy 

Alb = 2 d ,  A/b2 = 2U,, (5)  

U’(z) = erfc (bz ) ,  U(z )  = U,(l-&ierfc[bz]). (6 )  

so that b = dU;’ ,  A = 27dU;’. Integration of (4) yields the shear and velocity 
profiles : 

The only adjustable parameter is U,. As illustrated in figure 1, choosing a value 
near 13 for U ,  results in a realistic velocity profile to about z+ = 30, acceptable for 
our purpose. 

A reviewer has pointed out that in a steady flow without a pressure gradient the 
velocity profile curvature vanishes at  the wall, in a boundary layer. The same 
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FIGURE 1. Comparison of the two air profiles used in this study (a, ierfc profile according to (6.) 
A, U”(0) = 0 according to (7) )  with a linear profile (0) and a logarithmic profile (a), showing the 
region of validity. Plotted on the standard z+ and U+ axes. 
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FIQuiw 2. Air velocity profile curvature comparison. The difference between the ierfc profile (a), 
the U”(0) = 0 profile (A) and the standard linear-logarithmio profile (0 )  i s  evident in this 
comparison of the curvature of each. 

U+“ 

condition also applies, to a high degree of approximation, over a water surface. The 
finite U”(0) value in (4) can perhaps be justified in a gust model as due to downwind 
pressure gradient. It is more satisfactory, however, to investigate a profile that does 
satisfy the required conditions without invoking such an excuse. In the absence of a 
pressure gradient the second velocity derivative should vary as z2 near the surface 
(Chapman & Kuhn 1986). A straightforward modification of our previous approach 
is to set 

with ChP3 = 4& and Cb-4 = 211, so that b = 27~-;U;~, C = 327~PU;~. 
With a choice of U,  close to 13, this formula again yields a realistic velocity 

distribution to about z’ = 30, again see figure 1. 
The second derivatives according to the above two formulae, with constants as in 

figure 1,  arc: compared with !Miles interpolation formula in figure 2. The centre of 
gravity of the areas under the  curve^ is at  U,, as ( 3 b )  shows. 

V ( z )  = - Cz2 exp ( - b2z2) (7) 
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3.3. Velocity profile on the water side 
On the water side the velocity profile is slower to develop, on account of lower 
kinematic viscosity. The viscous boundary layer remains thin enough for several 
seconds for laminar flow to persist. In  that layer, a model of parallel laminar flow, 
due to impulsively applied constant shear stress, yields a good approximation to the 
observed mean velocity distribution (Kawai 1979). The model profile is of the same 
functional form as one of the air velocity profiles discussed above : 

where L, = 2( v, T):, the viscous boundary layer depth T s after the application of the 
surface stress. As implied by the notation, L, serves as a convenient lengthscale, with 
a typical value of a few millimetres. The value of the surface velocity is then 

uo = ~ i w ~ s ( n v w ) - ’  = (~*,n-’) (pap;’) (u*aLsvil), (9) 

where p = pv is dynamic viscosity. Uo is again a multiple of the velocity scale on the 
air side, u*,. The velocities and velocity gradients on the water side of the interface 
are, however, much smaller than on the air side, and affect the integration little. Of 
the water-side profile parameters only the surface velocity and depth of the 
boundary layer are important. In the computations we have used a simplified 
velocity distribution, namely 

which coincides with the profile given by (9) over the range of significant velocities. 
The ‘natural ’ lengthscales on the two sides of the interface, L, and v, u;: differ, the 

latter being inconveniently small. We have used L, as the common lengthscale in our 
calculations, translating the air-side profile appropriately. Although the obvious 
choice for a velocity scale is u*,, U ,  is more convenient because it yields non- 
dimensional velocities of order one. 

3. The eigenvalue problem 
Let all lengths now be expressed as multiples ofL,, all velocities as multiples of U,. 

Reynolds numbers in air and water are then R, = U,Ls/va, R, = UmLs/v,. A 
disturbance streamfunction is introduced : 

Y(x,  z ;  t )  = $ ( x )  exp [ik(z-ct)], (11) 

where $ ( z )  is the amplitude distribution. The scaled Navier-Stokes equations for an 
incompressible fluid may be linearized and the pressure eliminated to yield the 
Orr-Sommerfeld equation (OSE) for the amplitude distribution. In  the air, this is 

(U, - c )  ($: - $, k2) - Ui $, = (ikB,)-l&” - 2k2& + k4$,, 

(U, - c )  (& - 4, k2) - Uk q5, = (ikRw)-l@2 - 2k2$; + k4$,. 

(12) 

(13) 

and in the water 

With a mean velocity distribution prescribed, these equations may be integrated 
in principle, for a chosen complex value of c .  The approach used here is to perform 
a ‘ top-down ’ numerical integration in the air, and a ‘ bottom-up ’ integration in the 
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water. The resulting solutions must then be made to satisfy the boundary conditions 
at  the interface by an appropriate choice of the eigenvalue, c. 

co, both disturbance velocity components must vanish, which in terms of 
the disturbance amplitude, $ ( x ) ,  means that 

At z = 

$ ( x )  = $ ' ( z )  = 0, z = * 00. (14) 

The boundary conditions at  the air-sea interface are much more complicated than 
over a solid surface. Both components of the velocity and shear stress must be 
continuous. The normal pressure is discontinuous between the water and air, the 
difference being balanced by the surface tension force over a curved interface. The 
linearized free surface boundary conditions, neglecting surface tension gradients or 
film effects, have been written down by Wuest (1949) and later workers. They are 

$a = $w, (15) 

c- u, c- u, 

= (V:, -=) $w + (c- U, + 3ikR;l) $k+- " 
c- u, ikR, ' (18) 

where Ci is the wave speed of free-surface waves of wavenumber k .  Satisfying these 
four conditions simultaneously is a major difficulty in finding the eigenvalues. 

4. Numerical procedure 
The chief difficulty in numerical solution of the OSE is that the viscid portion of 

the total solution varies on a much shorter scale than does the inviscid portion, 
rendering the OSE very 'stiff' near the interface. To overcome this difficulty, we used 
the compound matrix method, a numerical technique which combines the inviscid 
and viscid solutions through the use of a Ricatti transformation. A complete 
explanation of the method and its application in obtaining the eigenfunctions of the 
instability waves may be found in the Appendix. 

The numerical computations were performed in the following manner. Initial 
conditions for the transformed OSE terms, y(z),  at largekx were calculated from 
(A 15) and (A 17) using a trial scaled complex eigenvalue c, a fixed scaled wavenumber 
k ,  and the appropriate Reynolds number. The integration of these y(z) terms from 
z = & co to z = 0, employed a fourth-order Runge-Kutta scheme. The values of y,(O) 
and y,(O) obtained from the integrations were then used in (A22) to calculate the 
value of the determinant. The bottom-up and top-down integration procedure was 
repeated twice more with slightly different trial eigenvalues, generating three error 
values. Muller's method (Gerald & Wheatly 1984, p. 35, an iterative method which 
finds the complex root of a quadratic fitted to the three pairs of trial eigenvalue-error 
points) was used to adjust the eigenvalue until the relative error was reduced to an 
accuracy of at  least The eigenvalue, a scaled complex wave speed, yielded a 
scaled disturbance growth rate, kc, and a frequency, w = kcr, at a single wavenumber. 
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FIGURE 3. Phase speed (cr) ( - - - - - )  and growth rate (kc,) (-) plotted against wavenumber for 
different shear flow cases. Water-side boundary-layer development time (T) is held constant at 5.0 s 
for all eases. I n  all cases shown L, = 0.447 cm. (a) u*, = 15.0 cm s-l, (a) u*, = 18.0 crn s-', 
(c) u*, = 21.0 em s-', (d )  u*, = 24.0 cm s-'. These plots me similar to Kawai's (1979) and show an 
apparent, yet fortuitous, connection between minimum c, and maximum kc,. 

=*a 

(cm s-l) 

15.0 
18.0 
21.0 
24.0 
15.0 
15.0 
15.0 

T 
( 8 )  

5.0 
5.0 
5 .O 
5.0 

10.0 
12.0 
15.0 

UO urn 
(em s-l) (em s-l) L, 

6.8 197.7 0.447 
9.8 238.9 0.447 

13.4 280.7 0.447 
16.5 345.0 0.447 
9.63 200 0.632 

10.55 201 0.692 
11.8 202 0.775 

TABLE 1. Flow parameters 

R, 
589 
712 
836 

1023 
845 
930 

1047 

R, 
8845 

10688 
12554 
15235 
12688 
13963 
15707 

The eigenvalues for a specific velocity profile were found over a range of 
wavenumbers, resulting in curves of phase speed and growth rate versus 
wavenumber, illustrated in figure 3. Similar curves were found for velocity profiles 
based on different values of u*, (see table l), as well as for different surface tension 
and viscosity values. These curves allowed an analysis of the effects of variable flow 
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parameters, surface tension and viscosity on the growth rate and phase speed of the 
instability waves. 

All calculations were done in complex double-precision fortran on a SUN 4/100 
workstation. The domain of the problem was divided into 4000 equally spaced grid 
points. Convergence to an eigenvalue occurred within four or five iterations, with 
each iteration taking about 35 s. More iterations were required if the initial trial 
eigenvalue was far from the actual eigenvalue. Occasionally, stable modes were 
found. 

5. Results: effects of external variables 
Our original objective was to explore the effect of external variables on wavelet 

speed and growth rate, notably the question of whether the coincidence of minimum 
wave speed and maximum growth rate holds for fluids with a surface tension 
different from that of pure water. After the choices made for our velocity profiles, 
fluid properties plus u*, and L, (a function of the development time T) remained as 
independent external variables. We varied one of these variables at  a time, holding 
the others constant, at  the standard values of v = 75.0, pa = 0.0012, pw = 1.0, 
v, = 0.15, v, = 0.01, L, = 0.447 (T = 5.0), = 15.0, all in c.g.s. units. We also used 
the half-Gaussian velocity profile of (6) as our standard. 

First, we look at  the influence of u*,. With L, fixed, u” varies as u i ,  U and 
Reynolds number vary as u*. Figure 3 shows calculated wave speed and growth rate 
against wavenumber, at four different values of u*. Maximum growth rates increase 
somewhat faster than u:, and shift to higher wavenumber. At fixed E ,  however, they 
grow accurately with u:, hence with U”. The minimum wave speed, and the 
wavenumber at  which it occurs, both increase slowly with u*. The increase in the 
value of the wave speed tracks the surface velocity. The change in the wavenumber 
at  which it occurs is a first indication that the instability waves behave differently 
from free-surface waves. 

As in Kawai’s results, minimum phase speed and maximum growth rate nearly 
coincide at  all four u* values in figure 3. The correlation does not survive drastic 
change in surface tension, however. Figure 4 shows the effect of reducing surface 
tension to 45 dyn cm-’ ; the wavenumber of minimum wave speed changes more than 
the wavenumber of maximum growth rate. There is also a small rise in growth rate 
with reducing surface tension : this is reasonably attributed to a decrease in the work 
required to perturb a film-free surface. 

Varying air viscosity, at fixed u* and L,, increases U“ as vi2. Peak growth rate 
increases in the same proportion, see figure 5 ,  without significant change of wave 
speed or of most unstable wavenumber. When we changed va and u*, but so as to 
maintain U:/V; (hence U”) constant, the maximum growth rate changed by less than 
1 %. 

Varying water viscosity changes the water-side boundary-layer thickness L, as 
(v, T);. At fixed development time T the effect on wave speed is minor, tracking the 
change in surface velocity U,, see figure 6. The growth rate is more sensitive to v,. 

The same sensitivity shows up in the variation of the growth rate with development 
time, or at fixed v,, with L,, figure 7. The three curves shown were calculated with 
T = 5 , 8 ,  and 10 s. That water viscosity and development time influence growth rate 
similarly points to water-side boundary-layer depth as the governing variable. We 
verified that if L, is held constant while water viscosity and development time change 
in opposite directions, growth rate remains unchanged. The strong dependence of 
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FIGUI~E 4. Phase speed (c,) and growth rate (kc,) plotted against wavenumber for different values 
of Nurface tension. Hurface tension, c*, values are 45.0 (dashed) and 75.0 (solid) dynes cm-'. Shear 
flow parameters are u*, = 15.0 cm s-l and T = 10.0 s. Minimum phase speed moves to higher 
wavenumber as surface tension is decreased. Maximum growth rate moves to higher wavenumber 
as surface tension is decreased, but far less than the minimum phase speed. 
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PICURE 5. Phase speed and growth rate plotted against wavenumber for different values of 
kinematic viscosity of air, v,. Shear flow parameters are as in figure 4. Values of v, are 0.12 (dashed) 
and 0.15 (dash dot) cm2 s-l. Note that phase speed remains unchanged. Growth rates increase 
substantially with decreasing v, yet maximum growth rate wavenumber does not. 

- 2.5 

1 3 5 7 
k (cm-') 

FIGURE 6. Phase speed and growth rate plotted against dimensional wavenumber for different 
values of viscosity of water, v,. Values of v, are 0.009 (solid) and 0.10 (dashed) em2 s-l. Shear flow 
parameters are as in figure 4. Note the small effect that variable water viscosity has on the 
instability wave characteristics. 

growth rate on water-side development time is reminiscent of one-sided (flat plate) 
boundary-layer behaviour, see Schlichting (1979, p. 471). Such a property certainly 
distinguishes instability waves from free-surface waves. Although both Valenzuela 
(1976) and van Gastel et al. (1985) emphasize the important influence of the water 
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FIGURE 7. Growth rate against dimensional wavenumber for varying baundary-layer thicknesses. 
Boundary-layer depth is changed by varying boundary layer development time T ;  u*, is held 
constant a t  15.0 cm s-l. Note how the growth rates increase and the wavelength of the most 
unstable wave increases as the boundary-layer thickness increases. Development time T :  5.0 s 
(dash dot); 8.0 s (dashed); 10.0 s (solid). 

side on growth rate, the finding that boundary-layer thickness is responsible appears 
to be new. Figure 7 also shows that the most unstable wavenumber decreases as 
boundary-layer thickness increases, according to kG1 = Constant x L,, the constant 
being approximately 1.35. This relationship further ties the instability waves to the 
water-side boundary layer. 

6. Structure of the eigenfunctions 
With our method we were able to calculate the eigenfunctions specifying the 

structure of the instability waves. Real and imaginary parts of the eigenfunction 
amplitudes, plotted in figure 8 against distance from the interface, reveal that the 
perturbations are confined to thin layers on the air and the water sides, of a thickness 
of about 0.1 L,, or typically 0.2-0.3 mm (z+ = 3 or so). Plotting the corresponding 
streamfunctions over an entire wavelength (figure 9) makes the interface trapping 
clearer, and also illustrates the highly vortical nature of the velocity distribution in 
the instability waves. The surface velocity is typically 5 times higher than in a free 
wave of the same amplitude. 

We have also determined the energy supply from the mean flow to the 
perturbations, from the standard formula for non-dimensional perturbation stress 
(Drazin & Reid 1981, p. 221): 

where q5,. and q5i are real and imaginary parts of the perturbation streamfunction. 
The perturbation stress distribution is also confined to thin interface layers. The 
energy transfer to the perturbations, SdUldz, peaks on the air side of the interface, 
where the velocity potential is large. 

Because of the prominent role of the second velocity derivative in the instability 
problem, it is important to find out if the change of the U''(2) distribution from the 
Gaussian ansatz to the formula with U"(0) = 0, shown in figure 2, makes a major 
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FIGURE 8. Real and imaginary portions of the eigenfunctions in air and water at a wavenumber 
very close to that of maximum growth rate. Horizontal axis is scaled amplitude, vertical axis is 
scaled distance above or below the interface. Shear flow parameters are those of figure 4. Note that 
the disturbance is effectively confined to within z/Ls < 0.10 from the interface, or approximately 
0.045 cm. 

4 

................... ... 

FIGURE 9. Scaled amplitude of the eigenfunction in both air and water over a full wavelength at  
a wavenumber near that of maximum growth rate. Velocity profile is that with maximum 
curvature at the interface (ierfa) with parameters as in figure 4. Maximum contour value is that 
closest to the interface. Contour interval is 0.2 and negative values are dashed. Note the close 
proximity to the interface of the disturbance. 
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FIGURE 10. Wave speed and growth rate against wavenumber for the air velocity profile with zero 
curvature a t  the interface according to (7) (solid) and the ierfc profile with maximum curvature at  
the interface according to (6) (dashed). In both cases, T = 5.0 s and u*, = 15.0 cm s-'. 

FIGURE 11. Scaled amplitude of the eigenfunction in both air and water over a full wavelength 
using the air velocity profile of (7) with zero profile curvature at the interface. Wavenumber is near 
that  of maximum growth rate with parameters as in figure 4. Maximum contour value is that 
closest to the interface. Contour interval is 0.2 and negative values are dashed. Note the close 
similarity with figure 9. 

difference in the calculated results. Figure 10 shows the wave speed and growth rate 
curves versus wavenumber for the two profiles side by side. There are clearly 
significant differences, mainly in growth rate but no qualitative change. Somewhat 
surprisingly, the profile with zero curvature a t  the origin produces higher maximum 
growth rate in about the ratio of maximum u". The perturbation streamlines for the 
same profile (figure 11) are very similar to the ones shown for the standard case 
(figure 9), to the point that it takes careful scrutiny to find the differences. 

Our calculated growth rates are about twice as high as Kawai's, who used the Miles 
formula, with a maximum Ui(z) value three or four times as high as ours, but with 
vanishing U" near the interface, see figure 2. The exact reason for the different results 
is unknown, although velocity profile differences are suspected. We note, however, 
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FIGURE 12. Comparison of growth rates for three calculated cases and one observed case using the 
parameters of figure 4 (except for Kawai’s case, where u*, = 17.0 cm 8 l ) .  ., ierfc; 0,  U”(0) = 0; 
0, Kawai 1979; A, Larson & Wright (1975). 

that although Kawai estimated growth rates observed in the laboratory to be similar 
to what his calculations predicted, Larson & Wright’s observed growth rates were 
higher, close to our results, see figure 12. Kawai determined the wave energy 
(integrated spectrum) at different development times, and deduced a growth rate 
from that. This is not quite the same thing as the growth rate of an instability wave 
of given wavenumber. Larson & Wright used a microwave antenna, and were able to  
determine the growth rate of a narrow spectral band, which should approximate 
individual wavelet growth closely. 

7. Conclusions 
Summing up our past investigations, as well as our results, we catalogue here the 

properties of instability waves spontaneously appearing under wind on an initially 
smooth water surface. These ‘ruffles’ or ‘wavelets’ travel at  a speed close to the 
speed of a free wave of the same wavenumber. Their growth rate increases rapidly 
with wind stress (as uz) and peaks at a wavenumber equal to about O.75Ls, where L, 
is the thickness of the boundary layer developing on the water side of the interface. 
The air side of the interface affects the growth rate mainly through the second 
derivative of the velocity U”(z),  although the details (e.g. where U” peaks) are less 
important, as long as the fairly high values of U” occur near the interface. The flow 
structure within the instability waves differs dramatically from free waves, in that 
most of the forward motion a t  a crest takes place within a thin layer, a tenth or so 
of the wave lengthscale k-l .  The vorticity in this layer is high, so that the ruffles, 
while appearing to be wavelets, are also incipient eddies which may be expected to 
roll up and to form breakers at very modest steepness. 

The intriguing coincidence of minimum wave speed and maximum growth rate, 
which had started us on this investigation, turned out to be fortuitous. It is due to 
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the circumstance that the water-side boundary layer a few seconds after the start of 
the wind happens to have a thickness near O.75ki1, where L, is the wavenumber of 
minimum wave speed of free gravity-capillary waves on a water surface. 
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Appendix 
A. 1 .  l'he compound matrix method 

This numerical method is an efficient technique which eliminates the problem of 
runaway growth encountered when the notoriously 'stiff' OSE is integrated by 
standard shooting methods. The notation used in the description of the method 
below is taken from Ng & Reid (1979). 

The total solution of the OSE, & ( x ) ,  where z is positive upwards, is chosen to 
consist of two linearly independent solutions, an inviscid one $l(z) and a viscid one 
$ 2 ( z ) .  Asymptotically as x --f f 00 these solutions are 

$,(z) = exp ( L a 4 ,  = exp ( + P z ) ,  (A 1 )  
where the + sign applies to the water, the - sign to the air. The choice of sign 
ensures that the solutions die out in the far field, in accordance with the boundary 
condition a t  z = & co. The factors a and /3 are written down below and atre specific for 
the velocity profile used. 

The chief difficulty in numerical solution of the ORE is that as p + a,  the viscid 
solution varies on a much shorter scale than does the inviscid one, Zendering the OSE 
very 'stiff' near the interface. To overcome this difficulty, let 4 = [$, $',$",$"'IT, 
where T is the matrix transpose notation. The OSE can then be written as 

= C(z ) i ,  (A 2) 

where 

The coefficients C ( x )  are 

1 0 0  

C(z)= [ 0 0 0  O l :I* 
c4 c, cz c, 

C ,  = 0, 

C,  = 0, 

C, = 2La+iLR(U--c), 

C4 = -[k4+ikR[k2(U-c)+U"]], 

and TJand IT are specified by the shear flow velocity profile. In  this manner, the OSE 
has been rewritten as a system of first-order equations. 

The total solution and its derivatives may then be expressed as 

$=A1$,+A2$, ,  $'=A,$;+A,$k, $ " = A , $ ; + A , $ i ,  $ " ' = A  1 1  $"'+.A 2 2 ,  $"' 
(A 5) 

where A, and A, are constants to be determined in such a way as to satisfy the 

13 FLM 248 
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boundary conditions at  the interface. From the two independent solutions, a 4 x 2 
solution matrix is constructed, 

Next, a new vector is defined, y = [yl +. . . + y,], using the 2 x 2 minors of (A6) ,  

(A 7)  
- $‘ $ff‘- 4; $‘z, 

$f f f  - $; $2. 

Y l = $ l $ ’ z - & $ 2 >  Y 4 =  

Y 2 = 4 1 $ ; - $ ; $ 2 ,  Y 5 -  1 2 

Y3=$1$:-$;$27 Y 6 =  1 2 

The definition of these y compounds as products of the viscid and inviscid solutions 
‘mixes’ the two, suppressing the rapid variation of the viscid solution and 
eliminating the ‘stiffness’ of the equations, allowing them to be integrated using a 
standard shooting method. 

terms, 
the resulting derivatives are linear (Davey 1979). The derivative vector y’ has these 
components : 

If the y vector is differentiated and the OSE is used to eliminate any 

Y; = YZ, d = Y5, 

Y’z = Y 3 + Y 4 ,  Y; = - C 4 Y , + C 2 Y 4 + C , Y , + Y e ,  

Y i  = c 3 Y 1 + c 2 Y 2 + c l Y 3 + Y 5 ,  d3 = - c 4 Y 2 - c 3 Y 4 + c l Y 6 ,  

In matrix notation, this result is 
Y’ = 4 4 Y  

0 1 0  0 0 0  
0 0 1 1  0 0  

where B(z) = c 3  c 2  Cl 0 

0 -c, 0 -c3 0 c, 
The C, are as defined in (A4). 

coefficients equivalent to (A 2). 
It is clear that (A9) is a system of linear differential equations with variable 

A.2. Initial conditions 
We wish to integrate the OSE in each medium from the far field towards the interface. 
The amplitude of the disturbance in the air, qha(z), and its derivatives are, 
asymptotically 

$la(z) = [1,-aa,a:> -41Texp[(-aa)zI, 
(A 11)  

$za(z) = [ 1 , -Pa>P: ,  -P:ITexp [(-Pa)zI ,  
The air velocity profile characteristics at  a large enough z = z,  are 

Ua(za) = 1,  UL(2,) = 0. (A 12) 

Substituting these profile characteristics into the OSE, the roots of the resulting 
algebraic expression are found to be 

aa = k, pa = [ k 2 +  ikRa( 1 - c)];. (A 13) 



Ins tab i l i ty  waves on the air-sea interface 

Yia = AadL-dia$2a  = ( a a - - P a ) e ~ ~ [ ( a a + P a ) Z a I ,  

~ 2 a  = h a d g a - K a d z a  = ( P ~ - a ~ ) e x ~ [ ( a a + 1 B a ) ~ a I ,  

~ 3 a  = A a d Z a - K a d 2 a  = ( a ~ - P ~ ) e x ~ [ ( u a + P a ) 2 a I ,  

y =d’ qy -qyd ’  = 4a lit 2 9  l a  za u a P a ( a a - - a ) e X ~ t ( a a + ~ a ) z a ~ ,  

= $1  qy’ -$,q df 
5a ia za 2a a a  P a E  - 4) ~ X P  [ ( a a  + Pa) zaI, 

Yea = ia 2a la za a a P a )  ((aa-1Ba)ex~ [ ( a a + P a ) ~ a I , ,  
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The initial conditions for the top-down integration are the ya terms at z = 2,: 

\ 

(A 14) 

= 

qy,-vy = (  2 2 

Discarding the common {(aa-Pa) exp [(.,+Pa) x,]} factor, the system of initial 
conditions is written in matrix format as 

2 8 T  Ya(za) = - (aa+Pa) ,  4 + a a P a + E ,  a a P a ,  -aaPa(aa+Pa) ,  a a P a I  (A15) 
In like manner, the initial conditions for the bottom-up water integration are 

found to correspond to (Al4 )  but with the subscript a replaced by w and a’-$ 
replaced by P-ui  in the expressions for ylw, ysw, y4, and y6,. 

where a, = Ic, P, = [k2-iiwR,]i. (A 16) 
After removal of the common factor ((P, - a,) exp [(a, + ,Ow) z,]), this system of 

YW(ZW) = [kaw+Bw G+awPw+1B:> a,1Bw> awPw(aw+Pw), a:KIT. (A171 

initial conditions is written as 

Starting from a moderately large distance above and below the interface, (A 9) is 
integrated to the surface using the appropriate initial conditions, (A 15) or (A 17) ,  
and a trial complex eigenvalue c = c,+ici, to begin the procedure. The actual 
eigenvalue is found by satisfying the four interfacial boundary conditions, a 
procedure described below. 

A.3. Eigenvalue  relat ion 
An eigenvalue relation for the short-wave generation problem is sought subject to the 
initial conditions at  za, (A15), and at x,, (A17), and the interfacial boundary 
conditions described in the body of this article. A difficulty arises from the fact that 
tbe interfacial boundary conditions are written in terms of a four-dimensional vector 
4, while the solutions obtained from the integration are written in terms of the six- 
dimensional vector y. Upon initial inspection, the problem appears almost impossibly 
complicated. It is certainly different from that of the boundary layer over a flat 
plate, where the wall boundary condition is simply $ ( O )  = $’(O) and the eigenvalue 
relation in terms of the y compounds is y1 = 0. 

As written down in (A6), the total solutions on the two sides of the interface are 
linear combinations of the viscid and inviscid solution : 

da  = A l A a + A 2 $ 2 a ,  4 w  = A 3 4 l w + A 4 4 2 w -  (A 18) 
These forms are substituted into the interface boundary conditions, which may then 
be written as 

[Da-DwI = 0, (A 19) 

r 1 

13-2 
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and a similar expression for Ow but with the subscripts a replaced by w, and without 
the factors m and r multiplying the third and fourth rows. The variables E, F ,  H, 
I and J are written as 

J I = c-  U 0 + 3 i k R - l ,  J = (ikR)-l. 

As before, all variables have been scaled with respect to the previously identified 
scale variables, the subscripts a and w refer to air and water respectively and 

The determinantnof the matrix [Da-Dw] must be zero for the existence of non- 
trivial solutions of 4. Expanding this determinant as the sums of the products of the 
second-order minors (a Laplace expansion) produces an expression for the 
determinant in terms of the components of the y ( 0 )  vector. The second-order minors 
are reduced and the determinant expanded to yield the eigenvalue relation: 

r = PaIPw and m = PaIPw.  

[la1 [Swl -  [2a1[5w1+ [3a1[4w1+ [4a1[3w1- [5a1 [ 2 w l +  [Sal [ 1 w 1  = 0, ( A 2 2 )  

where [ la1 = Yla ,  [1w1 = Ylw,  [2aI = [Swl  = ~ 2 w ,  

[3,1= r [ ~ ,  Yla + J ,  Y~, I ,  [3,1= I ,  ylW + J, Y ~ ~ ,  

[4a1 = m [ E a Y , a - F a Y l a + ~ 4 a l >  [4wI = E w ~ 2 w - F w y l w + ~ 4 w  

[5a1 = r [ ( E a I a - H a ) Y l a + E a  J a ~ 3 a +  Jaybay 

F W 1  = ( E w I w - ~ w ) Y 1 w + E w J w Y 3 w +  JwY5w, 

[%I = rm[FaIa Y l a  +Fa Ja ~ 3 a  -Ha ~ 2 a  - I a  ~ 4 a  + Ja Y6a9 

[%I = Fw’w Y l w  + Fw Jw Y3w - Hw Y2w -‘w Y4w + Jw Y6w‘ 

A.4. Calculation of the eigenfunctions 

Once the eigenvalue and the y terms have been obtained using the procedure 
described above, the complex eigenfunctions for air and water may be calculated. 
The form of the eigenfunction is assumed to be that of (A5) with a separate 
eigenfunction system existing for each medium. Eliminating the constants in ( A  5) 
will yield four equations composed of y terms and eigenfunction terms (Ng & Reid 
1979) which are, in general form, 

YI$” - -Y2$’+Y4$  = 0, Y1$’tt-Y3$’+Y5$ = 0, ( A 2 3 ,  A 2 4 )  

y2$”’”3$’’+y6$ = o ,  y4$”’-y5$”+y6$’=0. ( A  25, A 2 6 )  

In  principle, any of the four above equations may be integrated to determine the 
eigenfunction. Ng & Reid (1979) indicate that a backwards integration of ( A  2 3 )  will 
do the best job of avoiding runaway numerical growth; we followed this direction 
and utilized a fourth-order Runge-Kutta scheme to obtain the eigenfunctions in air 
and water at a specific wavenumber, shown in figure 8. 

R E F E R E N C E S  

CHAPMAN, D. R. t KUHN, G. D. 1986 The limiting behavior of turbulence near a wall. J .  Fluid 

DAVEY, A. 1979 On the removal of the singularities from the Ricatti method. J. Comput. Phys. 
Mech. 170, 265-292. 

30. 137-144. 



Instability waves on the air-sea interface 38 1 

DRAZIN, P. G. & REID, W. H. 1981 Hydrodynamic Stability, 1st edn. Cambridge University Press. 
GASTEL, K. VAN, JANSSEN, P. A. E. M. & KOMEN, G. J .  1985 On phase velocity and growth rate 

GERALD, C. F. & WHEATLEY, P. 0. 1985 Applied Numerical Analysis, 3rd edn. Addison-Wesley. 
KAWAI, 8. 1979 Generation of initial wavelets by instability of a coupled shear flow and their 

evolution to wind waves. J. Fluid Mech. 93, 663-701. 
LAKIN, W. D. & GROSCH, C. E. 1982 Higher modes of the Orr-Sommerfeld problem for boundary 

layer flows. NASA Contract Rep. NAGI-175. 
LARSON, T. R. C WRIGHT, J .  W. 1975 Wind-generated gravity-capillary waves: laboratory 

measurements of temporal growth using microwave backscatter. J. Fluid Mech. 70, 417436. 
LOCK, R. C. 1954 Hydrodynamic stability of the flow in the laminar boundary layer between 

parallel streams. Proc. C a d .  Phil. Sm. SO, 105-124. 
MILES, J. W. 1957a On the generation of surface waves by shear flows. Part 1. J. Fluid Mech. 3 ,  

185-204. 
MILES, J. W. 19576 On the velocity profile for turbulent flow near a smooth wall. J. Aero Sci. 24, 

704. 
NG, B. S. & REID, W. H. 1979 A n  initial value method for eigenvalue problems using compound 

matrices. J. Comput. Phys. 30, 125-136. 
SCHLICHTING, H. 1979 Boundary Layer Theory, 7th edn. McGraw-Hill. 
TOBA, Y. & MITSUYASU, H. 1985 The Ocean S'urface: Wave Breaking, Turbulent Mixing and Radio 

VALENZUELA, G. R. 1976 The growth of gravity-capillary waves in a coupled shear flow. J. Fluid 

WUEST, W. 1949 Beitrag zur Entstehung von Wasserwellen durch Wind. 2. Angew. Math. Mech. 

of wind-induced gravity-capillary waves. J. Fluid Mech. 161, 199-216. 

Probing. Reidel. 

Mech. 76,  229-250. 

29, 23S252. 




